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We consider the problem of the first passage times for absorption (trapping) of 
the first j ( j  = 1, 2 . . . .  ) of k, j < k, identical and independent diffusing 
particles for the asymptotic case k >> 1. Our results are a special case of the 
theory of order statistics. We show that in one dimension the mean time to 
absorption at a boundary for the first of k diffusing particles, /~l.k, goes as 
(In k)-1 for the set of initial conditions in which none of the k particles is 
located at a boundary and goes as k -2 for the set of initial conditions in which 
some of the k particles may be located at the boundary. We demonstrate that in 
one dimension our asymptotic results (k >> 1) are independent of the potential 
field in which the diffusion takes place for a wide class of potentials. We 
conjecture that our results are independent of dimension and produce some 
evidence supporting this conjecture. We conclude with a discussion of the 
possible import of these results on diffusion-controlled rate processes. 

KEY WORDS: Diffusion; order statistics; mean first passage times; mean 
trapping times. 

1. I N T R O D U C T I O N  

M a n y  p r o b l e m s  in  c h e m i c a l  p h y s i c s  t h a t  i n v o l v e  r a t e s  c a n  b e  p h r a s e d  in  

t e r m s  of  t h e  t h e o r y  of  f i r s t  p a s s a g e  t imes .  (1-6) S u c h  a p p l i c a t i o n s  go  b a c k  a t  

l eas t  to  t h e  e a r l y  t w e n t i e t h  c e n t u r y .  (7'8) T h e  u s u a l  f o r m u l a t i o n  of  f i r s t  

p a s s a g e  t i m e s  p r o b l e m s  is in  t e r m s  of  t h e  d i f f u s i o n  of  a s ing le  p a r t i c l e  u n t i l  
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it encounters a trap or triggers some reaction. No explicit account is taken 
of the fact that there may be a finite number of diffusing particles. In an 
earlier paper (9~ we analyzed the effect of the number of lattice random 
walkers on the mean time for the first l (l = 1, 2 . . . .  ) of k independent 
walkers to reach a designated point in an infinite lattice. We showed that, 
in one dimension (l-D), if the number of independent random walkers is at 
least equal to 3, the earliest one of them to reach a designated point will do 
so in a finite average time. In contrast, it is well known (1~ that in 1-D a 
single random walker reaches a designated point with probability equal to 1 
but the mean time to do so is infinite. These results prompted us to 
investigate the statistics of absorption or trapping times of a number of 
diffusing particles. In particular, we will focus on a simple version of thej th  
passage time ( j -  1,2 . . . . .  k) problem for a system with k diffusing 
particles where by the j th  passage time we mean the time for thej th  walker 
of the k diffusing ones to reach a trap or designated point. The simplifica- 
tion arises from our assumption that the k diffusing particles do not 
interact. Our results can be regarded as a special case of the theory of order 
statistics (10 which has been of interest in statistics since the pioneering 
work of Fisher and Tippett. (12) We will deal with the case k >> 1, deriving 
results for the moments of thej th  passage time using asymptotic techniques 
appropriate to diffusion processes. These results will be shown, for simple 
diffusion described by Fick's law in l-D, to be independent of many of the 
details of the initial conditions. What is perhaps more remarkable is the 
fact that the asymptotic results are independent of the potential field in 
which the diffusion takes place for a wide class of potentials. We conjecture 
that these results are independent of dimension and produce some evidence 
supporting the conjecture, although we have nothing like a proof. 

Finally, we present a short discussion on the possible application of 
these results to chemical and physical rate processes. 

2. PRELIMINARY DEFINITIONS 

Let us start with a single diffusing particle in a medium with traps and 
assume one knows the probability G(t) that absorption has not occurred in 
the time interval (0, t). In all cases of practical interest, G(t) is differentiable 
for t > 0. The probability density for the absorption time (the first passage 
time density) will be denoted by g(t) and is given by g(t)= -dG(t)/dt.  
We will assume that eventual absorption occurs with certainty so that 
G(oo) = 0. The probability density, qj,k(t), for the absorption time of thej th  
out of k indistinguishable and noninteracting particles is 

q/ ,k( t ) : j (k]g( t )[1-G(t )]g- 'Gk-J( t ) ,  j = l , 2  . . . .  k (2.1) 
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This is easily seen since if the j th  passage time is t, j -  1 absorptions took 
place in (0, t) with probability 

and the j th  particle to be absorbed is chosen from the remaining k - j  + 1. 
Equation (2.1) follows by noting the identity 

(k - j  + 1 ) ( j  k 

It is convenient to consider all values o f j  simultaneously by introducing the 
generating function 

k 

Qk(z;t) = ~, qj, k ( t )zJ- l= k g ( t ) { G ( t ) + [ 1 -  G(t)]z} k-I (2.3) 
j=l 

Let us note that if k is also considered to be a random variable, we can 
simultaneously handle all values of k by introducing another generating 
function. Let the random number of diffusing particles be K and let 
Pk = Pr(K = k). If P(s) is the generating function 

P(s) = 2 Pk s~ (2.4) 
k=l 

then the average of Qk(Z;t) averaged over all values of k is 

dP(s) ~=a+o-  Q(z; 0 = s(t) (2.5) 
G)z 

For example, if p~ is a Poisson distribution so that 

1 / xk k = 1 , 2 , . . .  (2 .6)  
Pk-- e"-- I k! ' 

then 

Q ( z ; t ) -  Izg(t) e x p { l ~ I G ( t ) ] + # [ 1 - G ( t ) ] z  } (2.7) 

Since the function G(t) has remained unspecified, the results enumer- 
ated so far are model independent. To establish a relation between Eqs. 
(2.1)-(2.7) and a specific model, let us suppose that a single particle moves 
by diffusion in some space ~ with absorbing points or boundaries. If the 
dynamics allow us to calculate a probability density for the location of the 
particle at time t, p(r, t), r being a D-dimensional vector, then 

G( t) = laP(r ,  t) dDr (2.8) 

with an analogous formula with a sum in place of the integral when ~2 is a 
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lattice. When p(r, t) satisfies a Fokker-Planck equation in l-D, or when the 
system can be described as a 1-D lattice random walk with steps to nearest 
neighbors only, one can write down directly an equation for moments of 
the first passage time for a single diffusing particle. (t) No comparable 
simplification occurs when k > 1, but in the limit of large k we will see that 
one does not need to know G(t) in great detail to find the leading term in 
the expression for the moments. 

3. DIFFUSION IN ONE DIMENSION 

Our first example is that of simple diffusion on a line with absorbing 
points at either end. We will see later that certain of the qualitative features 
of this example are easily generalized and appear also in the case of 
diffusion in a nonuniform field. The 1-D diffusion equation is 

- l )  ( 3 . 1 )  Ox 2 
If x = 0 and x = L are absorbing points, this equation is t o  be solved 
subject to p(0, t) = p(L, t) = 0. The general solution to this equation can be 
written as 

p(x, t)  = foLp(y,O)K(x, y; t) dy (3.2) 

where ( ~ 3) 

K(x, y;  t) = 2 E sin( sin exp 
n = 0  

Combining Eqs. (2.8), (3.2), and (3.3) we can derive the following expres- 
sion for G(t): 

=-- 1 - h(t) = fooLP(y,O)H(y, t)dy (3.4) G(t) 

with 

H(y, t )  = 4 sin[(2n + 1)~ry/L 1 exp - (3.5) 
~r n=0 2n + 1 L 2 

To see why one needs very little information about G(t) to calculate 
moments of the j th  passage time, consider the casej  = 1. The mean passage 
time for the first of k particles to be absorbed is 

tzLx = fo~tq,,k(t)dt= fo~176 (~176 d, (3.6) 
J0  

Since G(0) = 1, and G(t) decreases monotonically to zero with increasing t, 
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it is evident that the major contribution to the integral comes from the 
neighborhood of t = 0 in the limit of large k. If we write H(y, t)= l - 
h(y, t) in Eq. (3.5), then a Poisson transformation of the series for H(y, t) 
leads to the expression 

h(y,t) = 2I I -eo( 2-2-~ ) 1 I(,L 
-b 2l=1 ~ ( -  1)/ q~ (2D-~[-/2 - q~ (2Dt)l/2 

(3.7) 

where ~(x) is the error function 

1 
, ( x )  - ( 2 , r  fX_e-"2/2d, (3.8) 

which has the asymptotic property 

1 e -x2/2 
e?(x)~ l  (2~r)t/2 x (3.9) 

Thus, w h e n y  v a 0, Eq. (3.7) can be written, for small 1-= DI/L 2, as 

h(y , t )~(  4D____Zt~ )1/2[ l e_y2/(4Dt) ~ I~e-(L-y)2/(4Dt)] (3.10) 

which is symmetric around y = L/2, as it should be, and which tends to 0 
as r-->0 provided tha ty  =~ 0 or L. The expression for/q,k is, from Eq. (3.6) 

i~ ( ~o - kh( O l,k~jO ~ dt (3.11) 

to leading order in h(t). This expression is valid when h(t)<< 1, but this 
regime is the only one of interest when k >> 1. In the present case the 
expression for h(t) is 

,,1/2 r'L r l__e_f/(4Dt ) + l_____e_(L_y)2/4Dt]dy (3.12) 
J 

In the limit of large k, the major contribution to the integral defining 
/~l,k will come from the values of t for which h(t) is small. The asymptotics 
of /tl, k will depend on how, in detail, h(t) approaches 0. Since the term 
exp[-y2/(4Dt)] goes to 0 as t ~ 0  for y > 0, we may expect different 
qualitative behavior depending on whether or not p(y,O) approaches a 
nonzero value as y ~ 0 (a similar statement is valid in the neighborhood of 
y = L). If, for example, we assume the uniform distribution 

p(y ,O)  = 1 /L  (0 <~ y <. L) (3.13) 

as a prototype of the case in which p(0, 0) and p(L, 0)v e 0, then we must 
return to Eq. (3.7) to determine the behavior of h(t) as t--->0. We find, in 
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that case, that asymptotically 

f0 ,- (Z )w dy 

--  4L ( D__ftr; ),/2 (3.14) 

plus error terms that go to zero at least as fast as exp[-L2/(4Dt) ]  as 
Dt/L2---)O. Therefore, for the initial condition specified in Eq. (3.13), the 
formula in Eq. (3.11) implies that for large k 

~rL 2 1 
/q ,k"  8D k 2 (3.15) 

This is to be compared with the exact result for k = 1, 

L2 (3.16) 
/xl'z- 12D 

It will be noted that, as one would expect for the initial condition (3.13), the 
mean time,/~l,~, for the first of the k walkers (for k >> 1) to be absorbed at 
x = 0, or x = L, is much less than the mean time,/~.l, for only one random 
walker. One can show that whenever p(y,O) is continuous at y = 0 (or 
y = L) andp(0,0)  o rp(L ,0)  = const 4 = 0,/zl, ~ will go to 0 as k -2 whenever 
k>>l.  

A different behavior results whenever the initial conditions preclude a 
random walker from being in the neighborhood of either absorbing point. 
Let us suppose that there is an open interval (y~, Y2) satisfying 0 < y~ < Y2 
< L, such tha tp(y ,  0) = 0 in (0, Yl) and (Y2, L). Then, for al ly in (Yl, Y2) it 
is true that limt_,oexp[-y2/(4Dt)] = 0. Therefore, we can expect that the 
integral appearing in the definition of h(t), Eq. (3.14), tends to 0 as t--)0. 
Furthermore, using techniques familiar in the asymptotic evaluation of 
integrals, (14) we can assert that the principal contributions to the value of 
the integral come from the neighborhood of the end points, y~ and Y2, and 
depend on the behavior of p(y, 0) in those neighborhoods. Let us consider 
the contribution at y~, assuming that p(y,O) is continuous in a neighbor- 
hood of that point, and that 

lim p(y,O) -~p~ = const (3.17) 
Y--"Yl 

Then 

I(t) =;~2 p(y,O)y e x p ( -  -~-~ 

[ y~ I Cy2_y ' p(y, + v , 0 ) e x p [ -  v - ~ ] 3 o  y,+v L -~-~(2y,+v)jdv] (3.18) =exp  
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It is evident that in the limit Dt/y~ ~ 0 the dominant contribution to the 
integral will come from small v. Therefore, we can neglect v 2 with respect 
to y~v in the exponent and write 

-y~/(4Dt)~y2--y, P(.)"I q- /3, 0) I(t)~-~e .Yl ~- v e-Y'~/2Dt dv 

~ ~1101 e-Y]/(4Dt)(Y2-Yle-ytv/(2Dt)jo dv 

2plDt e -y]/(4Dt) (3.19) 

d 
A similar contribution can be derived for Y2 with the exponential term 
replaced by exp[-  (L -y2)2/4Dt]. If L -Y2 > Yl, the contribution from Yl 
will be the dominant one; and when Yl > L -Y2,  the contribution from Y2 
dominates. In either case we see that for D t / L 2 ~  O, 

h ( t ) ~  C 1 t3/2exp( - to/t) (3.20) 

where C 1 and t o are constants. The parameter t o has the dimensions of time 
and in the present case is given by 

m i n [ y ~ , ( L - y 2 )  2] 
to = 4 D  (3 .21)  

and C1 = 4p1D 3/2/(y~Trl/2) has the dimensions of (time) -3/2. It should be 
emphasized that this is valid only when Eq. (3.17) is true. When p(y,O) 
behaves like (y - y y  nea ry  = Yl, the exponent 3 /2  in Eq. (3.20) must be 
replaced by a + 3/2. 

The results obtained in the last paragraph allow us to write, as an 
approximation, 

I~,,k~ fo~eXp[ - kClt3/Zexp(- to/ t) ] dt (3.22) 

More generally, Eq. (2.3) enables us to write a generating function for the 
mean absorption time of the j th  out of k random walkers: 

k 
Uk(Z ) = ~ Izj,~zJ-'= fo~176 

j = l  

_ 1_ f o o ~ ( ( G ( t ) + i i _ G ( t ) ] z ) k _ z k ) d t  (3.23) (1 z) 

where the second representation is obtained from the first by an integration 
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by parts. We will be interested in j << k, in which case we can write 

1 fo~ V k ( z ) -  (i - z) 

I 
- z) fo ~ e x p [ - k h ( t ) ( 1  - z)]dt (1 
1 - z) fo ~exp[  - kC't3/2(1 - z ) e x p ( -  to/t)] dt (3.24) (1 

Thus, we see that the evaluation of all of the average absorption times 
requires an asymptotic analysis of an integral of the form 

f(X) = tOfo~eXp[ - X,3/2exp(- 1 / ~-)] d'r (3.25) 

for large X, i.e., large k. The relationship between Eq. (3.24) and this form 
for the integral is established by setting 

= kClt~3/2(1 - z) = k;ko(1 - z) (3.26) 

where Xo =- Clt3o/2. Using results established in Appendix A, we can show 
that for large X, 

to [ 1 (3/2 + C) + (3/2)ln(InX) ] 
Uk(z)~ (1 - z) lnX (lnX)2 + - . .  (3.27) 

where C = 0.5771 + .  This result will be used to find approximations to 
the/~;,k �9 

A first step in finding the coefficient of z : in Eq. (3.27) [which depends 
on z through Eq. (3.26)] is to observe that if one is given a generating 
function A (z) of a set of coefficients, { an }, then the coefficient of z n in 
A (z)/(1 - z) is a 0 + a I + �9 �9 �9 + a n. The significance of this remark is that 
we can restrict ourselves to the analysis of the two terms in brackets in Eq, 
(3.27). Consider the contributions from the lowest-order term 

1 _ 1 (3.28) 
lnX lnX0k + ln(1 - z) 

The coefficient/~l,k is obtained from Eq. (3.27) by setting z = 0. Thus, we 
have 

to [ (3/2 + C) + (3/2)ln(lnXok) 1 
/h,k lnX0 k 1-- lnX0 k + ' ' '  (3.29) 

The dependence on k is contained in the term in Xok. 
To evaluate the order of magnitude of the terms in Eq. (3.29) as a 

function of k, it is necessary to determine the order of X0. Let us suppose 
for simplicity that the interval Yt to Y2 is symmetrically located within the 
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interval 0 to L. From (3.21) we then find t o = y~/4D. Using the expression 
of C 1 below Eq. (3.21) we obtain 

)~o =- C1t3o/2- PlY~ 2vr|/2 (3.30) 

which is dimensionless, as it should be, since Pl has dimension (length)-1. 
Since P1 and Yl are at our disposal, we can choose them so that )~0 is of 
order 1. 

If we now assume that k is of order 1023, i.e., one mole of diffusing 
particles, then ln(ln )~ok)is of order 1 and Eq. (3.29) reduces to 

to [ y ~ ' ( L  - y2)2 ] 1 
-min (3.31) 

~tl,k' In Xok 4D In ?~0k 

A comparison of this result with the /q,k of Eq. (3.15) where /~ l ,k~ l /k  2 
indicates the importance of the initial distribution of the k random walkers 
with respect to the absorbing barriers on the k dependence of/~1,~. 

The ~,~ are obtained from the more complete expression in Eq. (3.27). 
A detailed development, outlined in Appendix B, leads to the result 

/~j.k~#l,k + (inX0k)2 1+  + g +  " ' "  + j - 1  

Equations (3.29) and (3.32) allow us to conclude that the first trapping 
event takes place on a time scale that is approximately of the order of 
(lnX0k)-i. However, once that first event has occurred, successive events 
take place on a shorter time scale. This can be seen by calculating the 
difference between average trapping times of the ( j -  1)st and the j th  
random walkers, 

to 1 
~-,k - / ~ j - l , ~  ( j _  1) (lnX0k) 2 (3.33) 

which is of the order of (ln)t0k) -2 in contrast to the behavior of ~l,k. In 
Fig. 1 we have plotted curves of qj,2o(t), where qj, k(t) is the probability 
density for the passage time of the j th  walker out of a total of k walkers 
[Eq. (2.1)], f o r j  = 1-5, as a function of t/t~ax, where tma • is the time at 
which qmo is maximized. Since the distributions are fairly symmetric, these 
maxima are close to the average trapping times,/~j,k- Although k is not very 
large, we can observe that the time intervals between successive maxima are 
less than tmax, consistent with the conclusions from our asymptotic calcula- 
tions. 

Similar calculations can be made for higher moments. In particular, if 
I~j,k(m) denotes the ruth moment of the trapping time for the j th  walker, 
then the variance is expressed as 

crf~ = ~j,k(2) -- /Zfk(1 ) (3.34) 
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Fig. 1. 
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Curves of qj 2o(t) j = 1-5, plotted as a function of t/tma x where tma x is the value of t 

at which ql,z0(t) is a maximum. 

The  coefficient of variation,  o],k/l~j,k, is, to lowest order  in 1/ lnX0k 

oj,k //~j,k ~ (ln 2tok ) -  1/2 (3.35) 

The interesting feature of this fo rmula  is that  the coefficient of var ia t ion 
goes to 0 with k very slowly. Again, using Xok = 1023 to establish an order 
of magni tude,  we find that  aj, k/l~j, k = 0.14. F r o m  the law of large numbers ,  
one might  naively expect oj, k/~.,~ to go to zero with k as k -1/2, but  our 
calculat ion shows the actual  dependence  on k to be  m u c h  weaker.  

So far  we have  dealt  with the case of two absorb ing  points on a line. If 
we change one of the points  to a reflecting point,  say x = 0, then Eq. (3.12) 
remains  valid except  that  

T j J0 Z = y- exp "4--Dt dy (3.36) 

for small values of D t / L  2. The asymptot ic  propert ies of this expression for 
h(t) are identical with those found in the case of two absorbing  points. 
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Consequently, the asymptotic dependence of ~,k(m) on k remains un- 
changed. 

All of the results obtained so far are for j << k. A natural extension of 
these ideas lies in the examination of the case j / k  = 0 where 0 < 0 < 1. 
The expected number of random walkers that remain in the system at time 
t is kG(t). A crude argument to calculate the time t o at which the j th  
random walker is absorbed is to equate the expected number of random 
walkers remaining in the system to k -  j ,  i.e., we define the time t o as the 
solution to 

G(to) = l - e (3.37) 

To determine the utility of this approximation, we must determine whether 
the probability density qj,k(t) defined in Eq. (2.1) is in any sense sharply 
peaked, as a function of t, around t o. The ideas involved are straightfor- 
ward and have been described in the context of the theory of order 
statistics.(lo Let us return to Eq. (2.1) and consider the factor 

[ 1 - G ( t ) ] J - ' G k - J ( t )  = { [ 1 - G ( t ) ] ~ 1 7 6  (3.38) 

The term in curly brackets tends to zero exponentially in k and is peaked 
around the solution to Eq. (3.37). If G(t) is expressed as G(t)= G(to)+ 
AG, then 

k {[1- 6(,)]~ 0(,)) 

= e x p ( k { O l n [ 1  - 6 ( , ) ]  + (1 - O)lnG(t)}) 

-exp k{eln[1-G(to)]+(1-O)lnG(to)} 2 0--_0 ) (3.39) 

where the expansion is to lowest order in AG. If G(t) is differentiable at 
t = t 0, then we can write AG-- - (t - to)g(to). Hence, when the binomial 
coefficient in Eq. (2.1) is replaced by the corresponding Stirling's approxi- 
mation, one finds that qj,k(t), the probability density for the absorption 
time tok,k, of the j th  random walker, is approximated by 

qj ,k( t )~[2~O(l_O)] ' /2g( to)exp[_k2g2(to)( t - - to)  2 k  2-~( l~ f f i  ] ( 3 . 4 0 )  

Owing to the form of qj,k(t) in (3.40), the absorption time t o has a Gaussian 
distribution with mean and variance, respectively, given by 

2 0 ( 1 -  0) 
lira ( tok,k}  = to,  Obk, k (3.41) kg(to) 
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We see that the heuristic device of assuming that the absorption time t o is 
equal to the solution of Eq. (3.37) is justified by the preceding analysis since 
o0k, ~a  goes to 0 as 1/k.  It should also be pointed out that this analysis does 
not depend in any critical way on the form of G(t), requiring only that 
A G ~ -  ( t - to )g ( to )  locally. The properties appropriate to the limit 
j / k  ~ 1 have been extensively investigated by statisticians and are of lesser 
interest in physical applications; they will therefore not be discussed here. 

4. DIFFUSION IN AN INHOMOGENEOUS FIELD 

Our results in the last section were shown to be valid in the limit of 
large k for diffusion in a force-free field. However, the only feature of this 
discussion that played a role in the analysis was the early time behavior of 
G(t). This suggests the possibility that more general diffusion models might 
also give rise to the same dependence on k for moments of absorption 
times. This indeed is true and can be shown to be valid for a large class of 
diffusion processes in 1-D. The basic idea underlying the analysis is that the 
first few out of a large number of diffusing particles to be absorbed tend to 
move essentially without reversing direction and without sensing details of 
the structure of the field. This is analogous to the behavior of particles 
performing a random walk on a discrete lattice in discrete time, as dis- 
cussed by Lindenberg et al. (9) Specifically, we assume that the diffusion 
process can be characterized in terms of a time homogeneous Fokker- 
Planck equation: 

- D ~)2[a2(x)P] v~-~ [al(x)p ] (4.1) ap 
i)t ;)x 2 

in which D has the dimensions of a diffusion constant, v has the dimen- 
sions of a velocity and the ai(x ), i - 1, 2, are dimensionless functions of x. 
To avoid difficulties with boundary conditions, we will assume that a2(x ) is 
bounded away from 0, i.e., there exists a positive constant M such that 
a2(x ) > M > 0. A further assumption is that al(x)/a2(x ) is integrable over 
the entire interval (0, L), allowing us to define the function 

U( x) = fo x a- -~  ~) ,~ (4.2) 

for 0 < x ~< L. The idea behind the calculation is that Eq. (4.1) can be 
formally solved by separating variables, and the result expressed in terms of 
an eigenfunction expansion. The behavior of the solution at very early 
times will be determined by asymptotic properties (for large index) of the 
eigenfunctions and eigenvalues. But these properties are known and lead to 
short-time behavior identical in form to that resulting from simple diffu- 
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sion. Hence, the moments of trapping times have the same dependence on 
k as we have found in the last two sections. 

As a first step it is convenient to transform Eq. (4.1) to dimensionless 
variables via 

x Dt vL r - (4 .3 )  Y - L '  r L2 ,  D 

to find that p satisfies 

0p 0 2 + 
- (a2p) - e (alp) (4.4) Or Oy 2 

The next step is to transform this equation to self-adjoint form by introduc- 
ing the dependent variable p ( y ,  r)  through 

e ( y , r )  _ 1 exp [W(y) ]p (y , r )  (4.5) 
a2(Y) 

where U(y) is defined in Eq. (4.2). When this transformation is made, 
p(y, r) is found to satisfy 

orOP = a2(y)e-~U(Y) + [e~u(y) Oo Oy (4.6) 

which is the desired result. With the assumption that both end points are 
absorbing points, this equation is to be solved subject to the boundary 
conditions 

o(O,r) = p(1,r) = 0 (4.7) 

Equation (4.6) can be solved by a separation of variables. Setting p(y, r) 
= q~(y)exp(-M-), we find that q~(y) satisfies the Sturm-Liouville equation: 

- - [  ] ~e'v(y) d e~F(y) ddP + qS=0 (4.8) 
dy dy a2(y ) 

The formal solution to Eq. (4.4) can be written in terms of the eigenfunc- 
tions and eigenvalues of this last equation as 

exp[eU(y)] s ~ (4.9) 
p(y , r )  - a2(y) 

where 
o0 

K(y,  ~; ,c) = ~ @j(y)epj(~)exp(-Xff ) (4.10) 
j=0 

As in the case of simple diffusion, we must investigate the small r 
behavior of the function h(r) derived from Eq. (4.10). It is shown in 
Appendix D that this behavior depends only on the asymptotic form of the 
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eOj(y) and hj for largej. This behavior, however, is known, (14) and one can 
assert that h ('r) has the same behavior as was found for simple diffusion for 
~- ---> O. It therefore follows that when j = 0(1) << k 

t~j,~C,/lnk, o~k..-.C2/(lnk) 3 (4.11) 

where C 1 and C2 are constants, as is the case for simple diffusion. 

5, FIRST PASSAGE PROBLEMS IN HIGHER DIMENSIONS 

It is not difficult to show that the first passage time problem to a 
closed absorbing boundary for spherically symmetrical simple diffusion 
leads to exactly the same k dependence for the moments as does simple 
diffusion on a line. 

Having shown that the lowest-order moments have the same depen- 
dence on k in a number of one-dimensional cases, including those with 
quite general force fields, we may speculate that the dependence on k of 
these moments holds in higher dimensions. This conjecture can be sup- 
ported by an analysis that is heuristic rather than rigorous at the present 
time. If the first few random walkers, or diffusing particles, to be absorbed 
in D dimensions move essentially in a straight line, i.e., do not exhibit 
noticeable excursions in the other D-1 directions, then one would expect 
first passage times to be independent of dimension. Conversely, if the first 
passage times turn out to be independent of dimension, the motion of the 
first few of the k walkers to be absorbed will be essentially straight line 
motions. Let us consider the case where the entire boundary is absorbing. 
In the cases analyzed so far, we required for the proof of results in Eq. 
(4.11) that there be some finite interval in contact with the absorbing point 
such that the initial condition is strictly equal to zero within the interval. 
When this class of initial conditions is valid, one needs only to calculate the 
short-time form for the probability that a single particle is not absorbed. In 
higher dimensions absorption takes place on a hypersurface rather than at 
a point so that to draw an analogy with diffusion in a sphere we need to 
require that p(r,O) be zero in a shell of finite width in contact with the 
absorbing boundary. When this holds, at sufficiently short time, we will 
ignore the boundary altogether and calculate p(r,t) in the infinite space. 
We then approximate G(t) as the volume integral of p(r,t) within the 
hypersurface. Strictly speaking, this procedure is not correct because it 
counts particles which have crossed the hypersurface and then returned. 
This contribution to G(t) should, however, be small at short times. In the 
one-dimensional examples that we have studied, this procedure leads to the 
correct time-dependent behavior of h (t) but with an incorrect multiplicative 
constant. Since only the correct time dependence of h(t) is needed to derive 
Eq. (4.11), this heuristic treatment leads to the correct form of the answer. 
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Let us suppose that p satisfies a D-dimensional equation of the form 

Op 
aT - j p  (5.1) 

where J is a second-order differential operator which we write 

J 

The coefficients b 0 and c i are allowed to depend on the spatial coordinates 
but not on time and B = (bij) is positive definite. Molchanov (~5) has 
discussed the problem of deriving the solution to Eq. (5.1) with (5.2) valid 
at short times. If the metric in the space is 

ds 2 = gudx 'dx J (5.3) 
where the matrix g [= (g/j)] is determined from B [= (b0.)] by g = B-1, then 
for p(r, 0) = 6 ( r -  ro) the small r expansion of p has the form 

H(r ' r~ ( ''r - r~ ) (5.4) 
P(r '~ '[r0 '0) ~.D/~ exp -~. 

where H(r, ro) is a function that can be calculated and llr-r01l is the 
distance in the metric defined in Eq. (5.3). Therefore, for a general initial 
condition described by an arbitrary density f(ro), one has 

H(r'r~ exp( [Ir-r0ll 2 f ~D/~ , -~Tr }f(ro) dDr d~176 (5.5) 

An analysis of this integral under quite general conditions leads to the 
asymptotic results in Eq. (4.11). We therefore expect that Eq. (4.11) is also 
valid for D-dimensional diffusion, although the constants may be quite 
difficult to calculate. 

6, DISCUSSION 

The result displayed in Eq. (3.13), i.e., /~ l ,k~l / lnk,  is somewhat 
surprising in that the mean time to absorption of the first of k random 
walkers decreases so slowly with k. Thus, a change from 104 to l023 random 
walkers, which is 19 orders of magnitude, leads to only a sixfold decrease of 
/~l,k. Since the first few of the k random walkers to be absorbed will move 
from their initial position to the absorbing boundary essentially in a 
straight line motion with a minimum of "reversals" as compared with the 
later arrivals, one might have expected a much larger effect in comparing 
thj, with ttl,l. As we will show in a sequel to this paper, the effect is more 
pronounced for random walks on a discrete lattice where th,k~l/k ~, 
where a is a constant which depends upon the number of lattice sites N in 
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the interval (0, L). There, the first of k walkers also moves essentially in a 
unidirectional walk to the absorbing boundary but does so by jumping 
between lattice points spaced a finite distance apart. In diffusion, however, 
the motion of the particles involves, by definition, a sequence of infinites- 
imal changes in position. In the limit as N o  ~ for fixed L, the lattice 
random walk approaches a diffusion process and/zi, k tends to 1/ lnk.  

In considering possible applications of our results, it is more instructive 
to look at (/~l,k)- l, i.e., the mean rate to absorption (trapping) of the first of 
k random walkers. For the special cases of diffusion-controlled rate pro- 
cesses, where the absorption or reaction of the first (or first few) of the 
particles by the "absorber" can lead to a "trigger effect," an increase by a 
factor of about 23, for k = 1023, in the rate of arrival at the absorber may 
not be negligible. As specific examples, we mention nucleation (precipita- 
tion) processes of various types, growth of colloid or aerosol particles, 
combustion of fuel droplets, and the onset of fluorescence in diffusive 
exciton trapping. Since calculations now in the literature for the mean rate 
to absorption in diffusion-controlled reactions are based on the diffusion of 
one particle, rather than the first of k particles, it would be of some interest 
to review the agreement between calculations and experimental data to see 
whether this factor of (In k ) - l  is in evidence. 

APPENDIX A. ASYMPTOTIC EVALUATION OF THE 
INTEGRALS IN EQ. (3.25) 

The integrals in question both have the general form 

f(X) = fo~eXp[ -X(~o  )3/2exp ( -  t~  

= t 0 f 0 ~ e x p [ -  X,3/2exp(- 1/~')] d'r (A.1) 

where we have inserted the parameter to 3/2 into the exponent to express 
the integrand in terms of dimensionless variables. To develop the asymp- 
totic form of Eq. (A.1) for large X, set 

/9 ---- "r3/2e - 1/~ (A.2) 

so that 

f0 ~Oe_X0 do f0 ~ e-X~ *2(0) do (A.3) 
f(X) = t o (do/d*) - to p 1 + (3/2)*(0)  

where ,(p) is the solution to Eq. (A.2) for �9 in terms of P. Since f(X) is 
expressed as a Laplace transform, we expect that the behavior for large X 
will depend on the behavior of the integrand near O = 0. 
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To determine this behavior, we take logarithms of Eq. (A.2), 

l n l  = 1 + 31n( --1 ) (A.4) 
p ~" ~- 

Since 0 is a monotonically increasing function of ~- and O0" = 0) = 0, small 
values of r will correspond to small P. Therefore, to a first approximation 

1 (A.5) ln(I/0-----Z 
This suggests that the exact solution to Eq. (A.2) can be expressed as 

1 (A.6) 
r(p) = ln(1/p) + ~(P) 

where 

lim ~(p) / ln  _l = 0 (A.7) 
o-~0 p 

Although it is not possible to find an expression in closed form for ~(O), we 
can determine its behavior for 0 ~ 0  by substituting Eq. (A.6) into (A.4), 
taking advantage of Eq. (A.7) to write a perturbation series. In this way we 
find as a first approximation to ~(O): 

3 ln(ln 1 (A.8) 

and the next-order approximation is 

3 

Succeeding correction terms go like In[In(I/0)] multiplied by powers of 
[In(I/p)] -1. For our present purposes, we shall need only the first approxi- 
mation given in Eq. (A.9). 

The range of integration in Eq. (A.3) will be divided into two pieces, 
(0,e) and (e, ce), where e<< 1 and where Xe>> 1. In the first of these 
integrals, we substitute the representation in Eq. (A.6) and expand to first 
order in ~(0). This yields 

e-X~ T2(p) 
fo P I + 3"r(P) dp 

~ f e  e - x p  

do p 1 3 

I + 3  ~(p)(21n p ~ )  

2 3 ( ' n l )  ( ' n ~  + ~ )  
do (A.10) 
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The asymptotic behavior of the integral will be determined by the singular 
behavior of the term in square brackets. These can be written in terms of 
u = ln(1/O) as 

1 31nu + 
[ ]  = u2 u3 + ' - .  (A.11) 

Hence, we must determine asymptotic properties of two classes of integrals: 

In = fo0 ~ e - x~ 1 ]  ~ do 
P [ln(1/p) 

(A.12) 

0 [ln(1/p) do 

To evaluate the asymptotic behavior of I~, we start by integrating by 
parts, setting 

U = e -xp, d V -  1 1 
O [ in ( I /o ) ] "  do (A.13) 

so that 

d U  = - Xe - x~ do, V = 1 
( n -  1 ) [ I n ( I / p ) ] " - '  (A.14) 

The contribution from U V  can be neglected at p -- e because exp( -  Xe) << 1, 
and at the lower limit because limo__, o 1/[ln(1/p)] = 0. Hence, we can write 

I~,.~ X_ f ' e - X o  do _ 1 fo x` e -Udu (A.15) 
n I J0 [ in ( l /o ) ]  . - I  (n 1) ( l n X _ l n u )  n - '  

Using the identity 

1 _ 1 f~  dt (1.16) 
s "-1 (n 2)! ./o 

we can write the expression for I .  as 

I. 
(n 1)! .,o -,o 

t 2 1_ (~  + t l n u +  ( l n u ) 2 +  . -  ]du 
(n 1)! .,o .,o L 2- ] 

(A.17) 

With negligible error for our purposes, we can extend the upper limit of the 
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u integral to oe [i.e., we neglect terms like exp(-M)] .  We therefore find 

1 C 
I , ~  ( n -  1)(in)t)"- '  0n)t)" + " ' "  (A.18) 

where 

C = - fo~eXp( - u)lnudu= 0.5771 + 

The J .  can be integrated by parts in similar fashion, leading to 

In + 1 foX,e_. In(In 7t - In u) 
J " ~  n---Z-T (n 1-----~ (lnX - lnu) "-I  du 

_ 1. + 1 (~t.-2e-tl .Xdt 
n -  1 (n 1)! Jo 

So I ,2 1 • X ' e - " l n ( l n X - l n u )  l + t l n u + ~ - ( l n u )  2+ . . .  du 

The lowest-order term will be given by 

(A.19) 

1 1 (X 'e - . ln ( ln?  t _ ln u) du 
(n 1) (lnX) .-1 .)o 

(A.20) 

and it is to the asymptotic properties of this last integral that we now turn 
our attention. The logarithmic term is infinite at u = 0, but otherwise the 
integrand is well behaved over the range of integration. Let us therefore 
dispose of the singular behavior at the origin by decomposing the range of 
integration into (0, 1/~,) + (1/)t, M). In the first interval we have 

fol/Xe-"ln(ln-~ )dU~fol/Xln(ln-~ )du=2tfx:ln(lnv)-~2 (A.21) 

An integration by parts leads to 

but 

)t ~ ln(lnv) ln(21nX) + X ~ :  dv (A.22) 
fx v---'5 - - d v -  ~ v21nv 

7tfX~ dv dv< X fx~dv I (A.23) 
2 v21nv ~ 2 v 2 2Mn)t 

so that the contribution from the interval (0, 1/X) goes to 0 like In(ln 2t)/X. 
Next, consider the integral over (1/)t,M). The important point here is that 
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the integrand in Eq. (A.20) is nowhere singular on this interval. We can 
therefore write 

fX'e-"ln(lnX-]du=ln nX ~'ee- ('~" e-" ln(1  l n u ~  ( ) ~ / x  "au+ - du (A.24) 
/x \ U ] dl/;k \ lnX ] 

The first integral on the right-hand side is effectively equal to 1. The second 
integral can be written 

_ (X, -u ~ (lnu) n foo~e-,,(lnu).du al/x e ,2=1 n(lnh) - ' - - - ~ d u ~ -  ~ 1 . = 1 n ( l n ) t )  n 

C + ( ) (1.25) O 1 
Ink 

Thus, we find that to lowest order 

I. ln(lnX) 

J~ n -  1 + (n - 1)(ln)~)"-' ' [ '  1 (n - 1)(lnX)"- '  (n 1----'--~ + ln(lnX) 

(A.26) 

We will not require any corrections to this formula for the text. 
As a final step i n  the analysis, we must return to the integral in Eq. 

00. Since z(p) is a (A.3) and dispose of the contribution from e to 
monotonic function of O, we write 

S ~ e  -x~ z2(p) 2 f  c P 1 + ~ r (p) do < ~ e -Px----~~ ~c (p) do 

2 ~ e - ' [ ' l  2 me-~ 
------ 3 fXc --(-- ~ ' [X]  d~<  -~ fx~ - ~ -  ~'(~)d~ (1.27) 

By our assumption that )re >> 1, we can use the large ~ form [derived from 
Eq. (A.2)] for z(O), 

�9 (0)--~02/3 (1.28) 

which allows us to approximate the last integral on the right-hand side of 
Eq. (A.27) as 

2 c ~  e-r 2 e -x~ (1.29) 
3 J X e  3 (~klE) 1 / 3 

which tends to 0 as Xe---> m at a faster rate than the terms retained from the 
integral over (0, e). 
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APPENDIX B. EXPANSION OF EQ. (3.28) IN POWERS OF z 

Let us first calculate the contribution to I~j,k from the term (In 7t)- ~, i.e., 
we will find the coefficient of z J-1. Start by making the expansion 

lnn(1 - z) 
1 _ 1 = ~ ( - 1 ) "  (B.1 

in 7t In 7to + ln(1 - z) n=0 (--In ~ 07  ~ ) 

The powers of logarithms in this expression can be further expanded as (16) 

z J (B.2) ln (1- z)= n! ( -  1)Jsj(n) 7 " 
j=n 

where Sj(n) is a Stifling number of the first kind. Combining Eqs. (B. 1) and 
(B.2), we find that the coefficient of z J-  1 in (ln 7t)- 1 is 

1 ~ ( _  1 ) , + t - i  n! 1 
( I -  1)! (lnX0).+ , s j _ , ( , ) -  ( j _  1) 

1 j > l  
(ln 7to)2 ' 

(a.3) 

where the last result is the lowest-order contribution in powers of (ln 7to)-~. 
The next order term from (lnTt)-' will be O[(lnTt0)-3]. A second set of 
contributions will come from the term l/(InX) 2. But 

1 _ ~ (_l)n+lnlnn-l(1-z) (B.4) 
(In 7t)2 ,= 1 (lnTt0) n +1 

so that the only correction that is O [(lnTto) -2] will be that to #Lk, the other 
corrections being at least O[(lnTt0)-3]. The same conclusion follows from 
an analysis of the term ln(lnTt)/(lnTt) 2. As a result, Eq. (3.29) gives the 
expression for/%k correct to terms in (lnTt0) -2. 

APPENDIX C. ASYMPTOTIC EVALUATION OF HIGHER MOMENTS 

The generating functions for higher moments are given by 
k 

U~,m(Z) = J='E ~j,k(m) z j - ' =  k fo~176 h ( t ) ( 1 -  z)] ~-1 -dtdh dt 

- -  m__ . ~ n ~ 1 7 6  _ _  _ _  _ _  1 z ([1 h(t)(1 z)] k zk}d t  

m (~tm-le-k( l - , )h(Odt  (C. 1) 
1 z a0 

We transform to the dimensionless variable r as in Eq. (A. 1), allowing us to 
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write 

mt~ [.o~ 7~+l(p) dp mt~' 
Uk'm(Z)  - -  f--'~Z J0 l 4- 37(/3) e - ~ ~  p --  ] --  Z f ro(Z)  (C.2) 

()= 

so that when m = 2 

where f,~(z) is the integral by itself. The analog of Eq. (A.10) is found to be 

fro() fo O in 1 ) ' ~ ( l n O  3 )  (ln 1 )m+ "2 

(C.3) 

Specifically, we will be interested in f2(z), which allows us to calculate the 
variance. For this case we can expand the terms in brackets in powers of 
u = 1/[ln(1/O)], finding 

1 3 (31nu+ 1) + . - -  (C.4) 
~t 3 2u 4 

f2(z)~I3 _ 314 _ ~9J4  (C.5) 

where I 's  and J ' s  are defined in Eq. (A.12). Using the estimates derived in 
Appendix A, we find that 

1 (C  + 1 + ~ln[ln(X)]) 
fz(z) 2(ln~) 2 (ln;k) 3 + . . .  (C.6) 

Expressions for the generating functions of higher moments are easily 
developed using the same techniques. 

APPENDIX D. SMALL 7 BEHAVIOR OF h(7) FOR GENERAL FP 
EQUATIONS 

Equation (4.9) has a formal expression for p(y, "r) which can be used to 
furnish the following formula for h(7): 

h('r)= folp(~,O)a2(~)e-W~) d~ fol e "U~y) a2(Y) 

) • .= qj(y)~j(~)(1 - e - g ' )  dy (D.1) 
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Thus, we need to investigate properties of the series 

I(y,~; ~) =-- ~, qaj(y)q~j(~)(1 - e-~ ~) (D.2) 
j=0 

for small r. Since the part of this series containing the exponential terms is 
a Dirichlet's series, (~7~ its behavior as r ~ 0 will be determined by the largej 
behavior of the q~j(y) and ?~j. These properties were first investigated by 
Liouville and can be written in terms of the function 

f l (y)  = s  d~ y (y )  = fl(y)/fl(1) (D.3) 
[a2(~)] ~/2' 

For large j one finds (14) 

~j~j2r2/ fl2(1), Oj(y)--Aj[ aj(y)e-'V(Y~/2]~/4sin~rjy(y) (D.4) 

where Aj is the normalizing constant found from 

1 _s (D.5) 
# 

For large j we can invoke the Riemann-Lebesgue (18) lemma to infer that 
A j2_+ A 2 where 

A2= g{ s -' (D.6) 

Hence, the small z behavior of I(y, ~; r is, to lowest order, that of 

I(y,#;r)~AZ(a2(y)a2(~)exp{- ~ [ U(y) + U(~)] }) '/2 

• J++ 
j=0 f12(1) ) } (D.7) 

But the last series can be regarded as the difference of two series, the first 
of which is proportional to 8 [V(Y) - Y(O] and the second of which has the 
same form as Eq. (3.3). Therefore, its asymptotic dependence on r, to 
lowest order is the same as that derived from Eq. (3.3). We may infer from 
this that the dependence of the moments on k is the same as that for simple 
diffusion, at least to lowest order. 
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